ReAsH/FlAsH labeling and image analysis of tetracysteine sensor proteins in cells.

نویسندگان

  • Sevgi Irtegun
  • Yasmin M Ramdzan
  • Terrence D Mulhern
  • Danny M Hatters
چکیده

Fluorescent proteins and dyes are essential tools for the study of protein trafficking, localization and function in cells. While fluorescent proteins such as green fluorescence protein (GFP) have been extensively used as fusion partners to proteins to track the properties of a protein of interest, recent developments with smaller tags enable new functionalities of proteins to be examined in cells such as conformational change and protein-association. One small tag system involves a tetracysteine motif (CCXXCC) genetically inserted into a target protein, which binds to biarsenical dyes, ReAsH (red fluorescent) and FlAsH (green fluorescent), with high specificity even in live cells. The TC/biarsenical dye system offers far less steric constraints to the host protein than fluorescent proteins which has enabled several new approaches to measure conformational change and protein-protein interactions. We recently developed a novel application of TC tags as sensors of oligomerization in cells expressing mutant huntingtin, which when mutated aggregates in neurons in Huntington disease. Huntingtin was tagged with two fluorescent dyes, one a fluorescent protein to track protein location, and the second a TC tag which only binds biarsenical dyes in monomers. Hence, changes in colocalization between protein and biarsenical dye reactivity enabled submicroscopic oligomer content to be spatially mapped within cells. Here, we describe how to label TC-tagged proteins fused to a fluorescent protein (Cherry, GFP or CFP) with FlAsH or ReAsH in live mammalian cells and how to quantify the two color fluorescence (Cherry/FlAsH, CFP/FlAsH or GFP/ReAsH combinations).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visualizing tyrosine kinase activity with bipartite tetracysteine display.

There is great interest in the development of new tools that can monitor protein kinase activity in living cells, in large part because of the central role of protein phosphorylation in cell signaling. Synthetic peptide-based sensors can be effective in vitro but require special means to gain cell entry. In contrast, fluorescent protein (FP)-based sensors are readily expressed in cells, but the...

متن کامل

New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications.

We recently introduced a method (Griffin, B. A.; Adams, S. R.; Tsien, R. Y. Science 1998, 281, 269-272 and Griffin, B. A.; Adams, S. R.; Jones, J.; Tsien, R. Y. Methods Enzymol. 2000, 327, 565-578) for site-specific fluorescent labeling of recombinant proteins in living cells. The sequence Cys-Cys-Xaa-Xaa-Cys-Cys, where Xaa is an noncysteine amino acid, is genetically fused to or inserted withi...

متن کامل

Tetracysteine-Based Fluorescent Tags to Study Protein Localization and Trafficking in Plasmodium falciparum-Infected Erythrocytes

UNLABELLED Plasmodium falciparum (Pf) malaria parasites remodel host erythrocytes by placing membranous structures in the host cell cytoplasm and inserting proteins into the surrounding erythrocyte membranes. Dynamic imaging techniques with high spatial and temporal resolutions are required to study the trafficking pathways of proteins and the time courses of their delivery to the host erythroc...

متن کامل

Site-Specific Labeling of the Type 1 Ryanodine Receptor Using Biarsenical Fluorophores Targeted to Engineered Tetracysteine Motifs

The type 1 ryanodine receptor (RyR1) is an intracellular Ca(2+) release channel that mediates skeletal muscle excitation contraction coupling. While the overall shape of RyR1 has been elucidated using cryo electron microscopic reconstructions, fine structural details remain elusive. To better understand the structure of RyR1, we have previously used a cell-based fluorescence resonance energy tr...

متن کامل

Hairpin structure of a biarsenical-tetracysteine motif determined by NMR spectroscopy.

The biarsenical-tetracysteine motif is a useful tag for genetic labeling of proteins with small molecules in living cells. The present study concerns the structure of a 12 amino acid peptide FLNCCPGCCMEP bound to the fluorophore ReAsH based on resorufin. (1)H NMR spectroscopy was used to determine the solution structure of the complex formed between the peptide and the ReAsH moiety. Structure c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of visualized experiments : JoVE

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2011